

SCIENCE DIRECT®

Mendeleev Commun., 2007, 17, 271-273

Mendeleev Communications

Reactions of boron trifluoride with allylic boranes and 1-boraadamantane

Sergey Yu. Erdyakov,^a Anatolii V. Ignatenko,^a Mikhail E. Gurskii^a and Yurii N. Bubnov*^{a,b}

^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: + 7 495 135 5328; e-mail: bor@ioc.ac.ru

^b A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: + 7 495 135 5085; e-mail: bubnov@ineos.ac.ru

DOI: 10.1016/j.mencom.2007.09.007

The reactions of boron trifluoride with triallyl- and allyldialkylboranes represent a convenient non-catalytic approach to allyl(difluoro)boranes. The rupture of 1-boraadamantane core with BF_3 leads to 3-fluoro-7-difluoroborylmethyl-3-borabicyclo-[3.3.1]nonane derivatives.

The chemistry of organyl(trifluoro)borates [RBF₃]M (M = K, R₄'N; R = alkyl, aryl, alkenyl, alkynyl, allyl or benzyl) have been extensively studied in the last decade because of their high reactivity and simplicity of preparation in a pure state, *e.g.*, by the interaction of RB(OH)₂ and KHF₂.¹ On the other hand, there are only two general approaches to the synthesis of parent organyl(difluoro)boranes: (1) the redistribution reaction of trialkylboranes with boron trifluoride in the presence of catalytic amounts of boron hydrides² and (2) thermal reactions of trialkylboranes with BF₃ etherate at 200 °C³ when dissociation of R₃B into R₂BH and alkene takes place.

Recently, it was shown that allyl(dichloro)boranes and allyl(dibromo)boranes, which are highly reactive allylborating reagents, $^{4-7}$ can be easily generated in situ by the transmetallation of allylic tins with $BX_3\ (X=F,\ Cl,\ Br)^{8,9}$ or, environmentally friendly, by the redistribution reaction of triallylboranes and BCl_3 or BBr_3 in inert solvents (without a B–H catalyst). 6,7

 H_{trans}^{5} H_{cis}^{5} H_{cis}^{4} H_{cis}^{5} H_{cis}^{5}

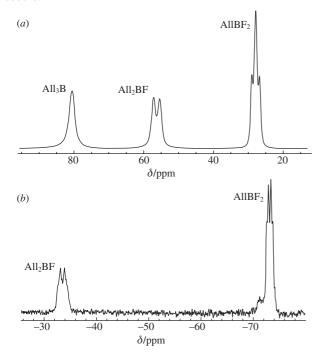
Figure 1 Section plot of the ¹H NMR spectrum of the reaction mixture of 2,4-pentadienyldipropylborane **3** with BF₃ (200.13 MHz, CDCl₃) (olefin region).

We have found that triallyl- and allyldialkylboranes readily react with BF $_3$ at -120 to -100 °C also in the absence of a B–H catalyst, giving rise to the corresponding allyl(difluoro)boranes in almost quantitative yields.

The reaction of boron trifluoride with triallylborane in a 2:1 molar ratio gave rise to allyl(difluoro)borane **2** (Scheme 1), isolated by distillation as a fluid extremely flammable on contact with air. Note that allyl(difluoro)borane, AllBF₂, is a compound stable in an inert atmosphere and does not degrade in storage for long periods (months), though the half-life of allyl(difluoro)borane prepared from All₄Sn⁹ is 18 h.

A similar reaction with 2,4-pentadienyldipropylborane **3** afforded a mixture of 2,4-pentadienyl(difluoro)borane **4** and dipropylfluoroborane (Scheme 2). Proximity of boiling points

 † *General procedure for generation of allyl(fluoro)boranes.* All manipulations with organoboron compounds were carried out under dry argon. In a Schlenk tube fitted with a cold trap (–78 °C) and containing allylic borane, a calculated quantity of boron trifluoride was condensed at –120 °C. After stirring for 30 min, the reaction mixture was slowly warmed to 0 °C and monitored by NMR spectroscopy. The products were isolated by distillation from the reaction vessel.


For 2: 90% yield; bp 4 °C. ¹H NMR (200.13 MHz, CDCl₃) δ : 1.95 [br. s, 2 H, H(1)], 5.05 [d, 1H, H(3)_{cis}, ³J_{H(3)cis-H(2)} 10.0 Hz], 5.09 [d, 1H, H(3)_{trans}, ³J_{H(3)_{trans}-H(2)} 17.1 Hz], 5.80 [ddt, 1H, H(2), ³J_{H(2)-H(3)_{trans}} 17.1 Hz, ³J_{H(2)-H(3)_{cis}} 10.0 Hz, ³J_{H(2)-H(1)} 7.3 Hz]. ¹³C-{¹H} NMR (50.32 MHz, CDCl₃) δ : 15–21 (very br., CB), 117.1 [C(3)], 130.1 [C(2)]. ¹¹B NMR (64.21 MHz, CDCl₃) δ : 28.0 (t, ¹J_{11B-19F} 70 Hz). ¹⁹F NMR (188.31 MHz, CDCl₃) δ : -73.2 (q, ¹J_{19F-11B} 70 Hz).

did not allow us to isolate compound **4** in a pure state; however, it was characterised by multinuclear NMR spectroscopy.[‡] The ¹H NMR spectrum of **4** shown in Figure 1 clearly indicates the presence of *E*- and *Z*-isomers **4a** and **4b** in a ~5:1 ratio.

The values ${}^3J_{\mathrm{H}(2)\mathrm{-H}(3)}$ 14.9 Hz for **4a** and 10.0 Hz for **4b** point out the predominance of the *E*-isomer in the reaction mixture.

The transfer of allylic groups from one boron atom (in 1 or 3) to another (in BF₃) occurs with allylic rearrangement via a six-membered transition state like **A** or **B**. This was previously demonstrated by investigating the exchange reactions of tricrotylborane with BX₃ (X = Cl, OR or SR).^{10,11}

The methodology proposed is inapplicable to the preparation of diallyl(fluoro)borane. Even with a triple excess of triallylborane, our attempts to move the equilibrium completely to monofluoro derivative **5** were not successful. Note that diallyl-(chloro)borane can be easily generated *in situ* by a similar procedure.^{6,7}

Figure 2 (a) 11 B and (b) 19 F NMR spectra of an equilibrated mixture of All₃B/BF₃ (2:1) (64.21 and 188.31 MHz, respectively; CDCl₃).

The ¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra exhibited signals corresponding to both allyl(difluoro)borane **2** and diallyl(fluoro)borane **5**§ (Scheme 3, Figure 2).

One more example of a non-catalytic desymmetrization process represents the reaction of BF $_3$ with 1-boraadamantanes, unique highly strained cage triorganoboranes, possessing a set of unusual features of R_3B . 12 We have found that the treatment of 3-methyl-1-boraadamantane thriethylamine adduct 6 with BF $_3$ at 0 °C leads to 3-methyl-1-boraadamantane 7, whose reaction with BF $_3$ gives rise to 3-fluoro-7-difluoroborylmethyl-3-borabicyclo[3.3.1]nonane derivatives 8 as a result of cage rupture (Scheme 4). The vacuum distillation of 8 gave back 3-methyl-1-boraadamantane molecule 7^{\parallel} via a ring closure, similar to that usually applied to the synthesis of 1-boraadamantanes from 7-methylene-3-borabicyclo[3.3.1]nonane derivatives and boron hydrides. 12

NEt₃

B

BF₃

$$0$$
 °C, pentane

 $-Et_3N \cdot BF_3$
 7

8

Scheme 4

In conclusion, the above results demonstrated three triorgano-borane desymmetrization reactions proceeding in the absence of B–H catalysts usually required. The reaction of boron trifluoride with allylic boranes is obviously a general regularity and presents a convenient approach to allyldifluoroboranes, while the rupture of the 1-borandamantane core with BF $_3$ is unexpected and represents a unique property of this cage compound.

This work was supported by the President of the Russian Federation (grant no. 2878.2006.3), the Russian Foundation for Basic Research (grant nos. 05-03-32953 and 05-03-33268) and the Division of Chemistry and Material Sciences of the Russian Academy of Sciences (Programme no. 1).

References

N. Miyaura and Y. Yamamoto, in *Comprehensive Organometallic Chemistry*, 3rd edn., eds. D. M. P. Mingos and R. H. Crabtree, vol. 9, ed. P. Knochel, Elsevier, Oxford, 2007, p. 146.

§ 5 in a mixture with 1 and 2 in *ca*. 1:1:2 ratio, prepared from 2 equiv. of triallylborane and 1 equiv. of BF₃. 1 H NMR (500.13 MHz, CDCl₃) δ: 2.23 [br. s, 2H, H(1)], 4.99 [br. m, 2H, H(3)], 5.84 [ddt, 1H, H(2), $^{3}J_{\text{H(2)-H(3)}_{mur}}$ 17.6 Hz, $^{3}J_{\text{H(2)-H(3)}_{cis}}$ 9.5 Hz, $^{3}J_{\text{H(2)-H(3)}}$ 7.5 Hz]. 13 C-{ 1 H} NMR (50.32 MHz, CDCl₃) δ: 26–30 (very br., CB) 115.4 [C(3)], 134.6 [C(2)]. 11 B NMR (64.21 MHz, CDCl₃) δ: 56.8 (d, $^{1}J_{\text{11}_{\text{B}-19}\text{F}}}$ 114 Hz). 19 F NMR (188.31 MHz, CDCl₃) δ: -33.8 (q, $^{1}J_{\text{19}_{\text{F}-11}\text{B}}$ 114 Hz).

[¶] The reaction mixture contains ~80% of **8** as well as **7** and BF₃·Et₃N. ¹¹B NMR (64.21 MHz, pentane) δ : -0.7 (s, BF₃·Et₃N), 28.0 [t, BF₂ (**8**), ${}^{1}J_{^{11}B_{-}^{19}F}$ 79 Hz], 59.9 [d, BF (**8**), ${}^{1}J_{^{11}B_{-}^{19}F}$ 98 Hz], 86.0 [s (**7**)]. ${}^{19}F$ NMR (188.31 MHz, pentane) δ : -148.5 (m, BF₃·Et₃N), -72.1 [q, 2F, BF₂ (**8**), ${}^{1}J_{^{19}F_{-}^{11}B}$ 79 Hz], -39.0 [q, 1F, BF (**8**), ${}^{1}J_{^{19}F_{-}^{11}B}$ 98 Hz].

7: 35% yield; bp 49–51 °C (2 Torr). Extremely sensitive to air. $^1\mathrm{H}$ NMR (200.13 MHz, CDCl₃) δ : 1.16 (s, 3H, Me), 1.2–1.7 (m, 12H, intricate multiplet of 1-boraadamantane core CH₂ protons), 2.90 [s, 2H, H(5), H(7)]. $^{13}\mathrm{C}$ NMR (50.32 MHz, CDCl₃) δ : 33.8 (q, Me, 124.6), 37.6 [t, C(6), $^1J_{^{13}\mathrm{C}^{-1}\mathrm{H}}$ 130.2 Hz], 37–39 [br., C(9), C(10)], 44.4 [d, C(5), C(7), $^1J_{^{13}\mathrm{C}^{-1}\mathrm{H}}$ 137.6 Hz], 45.2 [t, C(4), C(8), $^1J_{^{13}\mathrm{C}^{-1}\mathrm{H}}$ 125.2 Hz], 45–47 [br., C(2)], 50.7 [s, C(3)]. $^{11}\mathrm{B}$ NMR (64.21 MHz, CDCl₃) δ : 82.6.

^{‡ 4 (}as a mixture of *ca.* 5:1 *E*- and *Z*-isomers) in a 1:1 mixture with dipropylfluoroborane. 1 H NMR (200.13 MHz, CDCl₃) δ: 1.77 [d, 2H, H(1) (4b), $^{3}J_{\text{H(1)-H(2)}}$ 6.6 Hz], 1.99 [br. s, 2H, H(1) (4a)], 5.01 [d, 1H, H(5)_{cis} (4a), $^{3}J_{\text{H(5)}_{cis}-\text{H(4)}}$ 10.1 Hz], 5.12 [d, 1H, H(5)_{trans} (4a), $^{3}J_{\text{H(5)}_{trans}-\text{H(4)}}$ 16.6 Hz], 5.11 [m, 2H, H(5) (4b)], 5.50 [dt, 1H, H(2) (4b), $^{3}J_{\text{H(2)-H(3)}}$ 10.0 Hz, $^{3}J_{\text{H(2)-H(1)}}$ 6.6 Hz], 5.72 [dt, 1H, H(2) (4a), $^{3}J_{\text{H(2)-H(3)}}$ 14.9 Hz, $^{3}J_{\text{H(2)-H(1)}}$ 7.6 Hz], 5.86 [dddd, 1H, H(3) (4b), $^{3}J_{\text{H(3)-H(2)}}$ 10.0 Hz, $^{3}J_{\text{H(3)-H(5)}_{trans}}$ 6.2 Hz, $^{4}J_{\text{H(3)-H(5)}_{cis}}$ 6.2 Hz], 6.10 [dd, 1H, H(3) (4a), $^{3}J_{\text{H(3)-H(5)}_{trans}}$ 6.2 Hz, $^{4}J_{\text{H(3)-H(5)}_{cis}}$ 6.2 Hz], 6.10 [dd, 1H, H(4) (4a), $^{3}J_{\text{H(4)-H(5)}_{trans}}$ 16.6 Hz, $^{3}J_{\text{H(4)-H(5)}_{cis}}$ 10.1 Hz], 6.32 [ddd, 1H, H(4) (4a), $^{3}J_{\text{H(4)-H(5)}_{trans}}$ 16.6 Hz, $^{3}J_{\text{H(4)-H(5)}_{cis}}$ 10.1 Hz, $^{3}J_{\text{H(4)-H(5)}_{cis}}$ 9.7 Hz, $^{3}J_{\text{H(4)-H(3)}}$ 9.7 Hz]. 13C-{1H} NMR (50.32 MHz, CDCl₃) δ: 114.4 [C(5) (4b)], 115.4 [C(5) (4a)], 125.8 [C(2) (4a)], 131.0 [C(2) (4b)], 132.3 [C(3) (4b)], 133.6 [C(3) (4a)], 136.4 [C(4) (4b)], 136.7 [C(4) (4a)]. 11B NMR (64.21 MHz, CDCl₃) δ: 25.7 [t (4a), $^{2}J_{\text{11g-19g}}$ 77 Hz], 28.8 [t (4b), $^{2}J_{\text{11g-19g}}$ 86 Hz]. 19F NMR (188.31 MHz, CDCl₃) δ: -72.5 [q (4a), $^{2}J_{\text{19g-11B}}$ 77 Hz], -72.0 [q (4b), $^{2}J_{\text{19g-11B}}$ 86 Hz].

- 2 R. Koster, in *Houben-Weyl. Methoden der Organishen Chemie*, ed. H. Kropf, Georg Thieme Verlag, Stuttgart–New York, 1982, Band 13/3a.
- 3 B. M. Mikhailov and T. V. Shchegoleva, Zh. Obshch. Khim., 1959, 29, 3443 [J. Gen. Chem. USSR (Engl. Transl.), 1959, 29, 3404].
- 4 D. A. Singleton, S. C. Waller, Z. Zhang, D. E. Frantz and S.-W. Leung, J. Am. Chem. Soc., 1996, 118, 9986.
- 5 D. E. Frantz and D. A. Singleton, Org. Lett., 1999, 1, 485.
- 6 Yu. N. Bubnov, N. Yu. Kuznetsov, F. V. Pastukhov and V. V. Kublitsky, Eur. J. Org. Chem., 2005, 4633.
- 7 S. Yu. Erdyakov, M. E. Gurskii, A. V. Ignatenko and Yu. N. Bubnov, *Mendeleev Commun.*, 2004, 242.
- 8 F. E. Brinckman and F. G. A. Stone, J. Am. Chem. Soc., 1960, 82, 6218.
- $9\,$ S. L. Serre and J.-C. Guillemin, $Organometallics,\,1997,\, {\bf 16},\,5844.$

- 10 B. M. Mikhailov, Yu. N. Bubnov and V. S. Bogdanov, Zh. Obshch. Khim., 1975, 45, 333 [J. Gen. Chem. USSR (Engl. Transl.), 1975, 45, 319].
- 11 B. M. Mikhailov, Yu. N. Bubnov and V. S. Bogdanov, Zh. Obshch. Khim., 1975, 45, 324 [J. Gen. Chem. USSR (Engl. Transl.), 1975, 45, 3111
- 12 Yu. N. Bubnov, M. E. Gurskii and I. D. Gridnev, in *Comprehensive Heterocyclic Chemistry*, 2nd edn., eds. A. R. Katrizky, Ch. W. Rees and E. F. V. Scriven, Elsevier, Oxford, 1996, vol. 8, p. 889.

Received: 24th April 2007; Com. 07/2919